如果服務(wù)端要提供文件傳輸?shù)墓δ埽覀兡芟氲降淖詈唵蔚姆绞绞牵簩⒋疟P上的文件讀取出來,然后通過網(wǎng)絡(luò)協(xié)議發(fā)送給客戶端。
傳統(tǒng) I/O 的工作方式是,數(shù)據(jù)讀取和寫入是從用戶空間到內(nèi)核空間來回復(fù)制,而內(nèi)核空間的數(shù)據(jù)是通過操作系統(tǒng)層面的 I/O 接口從磁盤讀取或?qū)懭搿?/p>
代碼通常如下,一般會需要兩個系統(tǒng)調(diào)用:
代碼很簡單,雖然就兩行代碼,但是這里面發(fā)生了不少的事情。
首先,期間共發(fā)生了 4 次用戶態(tài)與內(nèi)核態(tài)的上下文切換,因為發(fā)生了兩次系統(tǒng)調(diào)用,一次是 read() ,一次是 write(),每次系統(tǒng)調(diào)用都得先從用戶態(tài)切換到內(nèi)核態(tài),等內(nèi)核完成任務(wù)后,再從內(nèi)核態(tài)切換回用戶態(tài)。
上下文切換到成本并不小,一次切換需要耗時幾十納秒到幾微秒,雖然時間看上去很短,但是在高并發(fā)的場景下,這類時間容易被累積和放大,從而影響系統(tǒng)的性能。
其次,還發(fā)生了 4 次數(shù)據(jù)拷貝,其中兩次是 DMA 的拷貝,另外兩次則是通過 CPU 拷貝的,下面說一下這個過程:
次拷貝,把磁盤上的數(shù)據(jù)拷貝到操作系統(tǒng)內(nèi)核的緩沖區(qū)里,這個拷貝的過程是通過 DMA 搬運的。 第二次拷貝,把內(nèi)核緩沖區(qū)的數(shù)據(jù)拷貝到用戶的緩沖區(qū)里,于是我們應(yīng)用程序就可以使用這部分數(shù)據(jù)了,這個拷貝到過程是由 CPU 完成的。 第三次拷貝,把剛才拷貝到用戶的緩沖區(qū)里的數(shù)據(jù),再拷貝到內(nèi)核的 socket 的緩沖區(qū)里,這個過程依然還是由 CPU 搬運的。第四次拷貝,把內(nèi)核的 socket 緩沖區(qū)里的數(shù)據(jù),拷貝到網(wǎng)卡的緩沖區(qū)里,這個過程又是由 DMA 搬運的。
我們回過頭看這個文件傳輸?shù)倪^程,我們只是搬運一份數(shù)據(jù),結(jié)果卻搬運了 4 次,過多的數(shù)據(jù)拷貝無疑會消耗 CPU 資源,大大降低了系統(tǒng)性能。
這種簡單又傳統(tǒng)的文件傳輸方式,存在冗余的上文切換和數(shù)據(jù)拷貝,在高并發(fā)系統(tǒng)里是非常糟糕的,多了很多不必要的開銷,會嚴重影響系統(tǒng)性能。
所以,要想提高文件傳輸?shù)男阅?,就需要減少「用戶態(tài)與內(nèi)核態(tài)的上下文切換」和「內(nèi)存拷貝」的次數(shù)。